Modules/Data/Storage/Vector StoresQdrant Vector Storeqdrant.tech To run this example, you need to have a Qdrant instance running. You can run it with Docker: docker pull qdrant/qdrant docker run -p 6333:6333 qdrant/qdrant Installation npmpnpmyarnbunnpm i llamaindex @llamaindex/qdrant Importing the modules import fs from "node:fs/promises"; import { Document, VectorStoreIndex } from "llamaindex"; import { QdrantVectorStore } from "@llamaindex/qdrant"; Load the documents const path = "node_modules/llamaindex/examples/abramov.txt"; const essay = await fs.readFile(path, "utf-8"); Setup Qdrant const vectorStore = new QdrantVectorStore({ url: "http://localhost:6333", }); Setup the index const document = new Document({ text: essay, id_: path }); const storageContext = await storageContextFromDefaults({ vectorStore }); const index = await VectorStoreIndex.fromDocuments([document], { storageContext, }); Query the index const queryEngine = index.asQueryEngine(); const response = await queryEngine.query({ query: "What did the author do in college?", }); // Output response console.log(response.toString()); Full code import fs from "node:fs/promises"; import { Document, VectorStoreIndex } from "llamaindex"; import { QdrantVectorStore } from "@llamaindex/qdrant"; async function main() { const path = "node_modules/llamaindex/examples/abramov.txt"; const essay = await fs.readFile(path, "utf-8"); const vectorStore = new QdrantVectorStore({ url: "http://localhost:6333", }); const document = new Document({ text: essay, id_: path }); const storageContext = await storageContextFromDefaults({ vectorStore }); const index = await VectorStoreIndex.fromDocuments([document], { storageContext, }); const queryEngine = index.asQueryEngine(); const response = await queryEngine.query({ query: "What did the author do in college?", }); // Output response console.log(response.toString()); } main().catch(console.error); API Reference QdrantVectorStore Edit on GitHubVector StoresPrevious PageSupabase Vector StoreNext Page